Table 1. Crystallographic data

					Density	(g.cms)		
Compound	a (Å)	b (Å)	c (A)	β (°)	Obs.	Cale.	\boldsymbol{Z}	Space group
Delpheline	12.32	13.40	14.13		1.29	1.28	4	P2,2,2,
Delpheline hydriodide	9.20	16.40	9.82	115	1.45	1.43	2	$P2_1$
Dehydrodelpheline	8.38	14.52	9.95	105	1.29	1.27	2	$P2_1$
Oxodelpheline	13.05	13.70	13.85		1.30	1.29*	4	P2,2,2
Acetyldelpheline	11.62	14.00	15.40			1.30	4	$P2_{1}^{2}2_{1}^{2}2_{1}^{2}$
		* D _{calc} .	for 1H2O is	1·27 g.cm.	⁻³ .			

served density does not agree with the value calculated for a hemihydrate. The formula $C_{25}H_{37}O_7N.H_2O$ which has been used gives good agreement between observed and calculated densities.

Acetyldelpheline, C27H41O7N

The Laue symmetry is *mmm* and the systematic absences determine the space group uniquely as $P2_12_12_1$. The crystals were of such poor quality that the density could not be measured accurately.

Acta Cryst. (1956). 9, 86

Double reflexion in aluminium-copper alloys. By J. M. SILCOCK, Fulmer Research Institute, Stoke Poges, Bucks., England

(Received 22 October 1955)

Alloys aged to form the intermediate precipitate θ' were reported by Guinier (1942) to give an anomalous spot on the zero layer line when oscillating single crystals were examined by Mo $K\alpha$ radiation. The spacing was given as $10\cdot1\pm0.5$ Å and Guinier suggested that matching of the eighth (001) $_{\theta'}$ plane (spacing 7×1.45 Å) with the sixth aluminium matrix {100} plane (spacing 5×2.02 Å) occurred. The anomalous spot was thus explained as the first-order diffraction from this modulated θ' structure.

Using Guinier's technique, Silcock, Heal & Hardy (1953-4) obtained this spot irregularly and at a spacing of 10.4 ± 0.3 Å. This did not fit in well with Guinier's hypothesis but no alternative explanation was offered. A second spot of irregular occurrence has been detected

on the first layer line of the aluminium matrix (Fig. 1). The following characteristics of anomalous spots require

explanation:

Fig. 1. Al 4% Cu aged 100 days at 190° C. [100]_{Al} vertical; beam 0-15° from [010]_{Al}; Mo Kα. Positions of anomalous spots marked by arrows.

The author wishes to thank Prof. A. J. C. Wilson for the use of apparatus purchased with a Royal Society grant, and Dr R. C. Cookson of Birkbeck College, London, who supplied the crystals. Financial support was received from the Department of Scientific and Industrial Research.

References

- COOKSON, R. C. & TREVETT, M. E. (1954). Chem. Ind. p. 1324.
- HENRY, T. A. (1949). The Plant Alkaloids, p. 696. London: Churchill.

(1) There is no dependence of the occurrence of the spots on ageing treatment.

(2) The first-layer-line spot is never observed on both sides of the equator at once.

(3) The intensity varies and the spots are frequently shorter than other reflexions.

(4) The zero-layer-line spot was not obtained by Gerold (1954) when using Cu $K\alpha$ radiation.

It has now been shown that these spots are due to the 'Renninger effect' (Lipson & Cochran, 1953), i.e. the reflexion of X-rays from *two* sets of strongly reflecting planes. This explains the positions of the spots and the characteristics listed above. It is probably the first example reported in which the co-operating planes (Table 1) belong to different structures so that nonintegral indices are obtained for the anomalous spots.

Table 1. Positions of anomalous spots and co-operating planes

Co-operating planes

22	ou-operating planes					
		θ' reflexion				
Indices of anomalous spot (all lattice indices)	Al matrix reflexion	θ_T' lattice indices	Al lattice indices			
Zero layer* 0,0,0.39	$\left\{\begin{array}{c} 31\overline{1}\\\overline{3}1\overline{1}\end{array}\right.$	$\overline{312}$ $3\overline{12}$	$\overline{3}, \overline{1}, 1.39$ $3, \overline{1}, 1.39$			
First layer 1,0,1.3	002	101	1,0,0.7			
* Cal	culated d sna	cing 10.3 Å.				

References

GEROLD, V. (1954). Z. Metallk. 45, 593.

GUINIER, A. (1942). J. Phys. Radium, (8), 3, 124.

LIPSON, H. & COCHRAN, W. (1953). The Determination of Crystal Structures, p. 30. London: Bell.

SILCOCK, J. M., HEAL, T. J. & HARDY, H. K. (1953-4). J. Inst. Met. 82, 239.